Analysis of Adaptive Evolution in Lyssavirus Genomes Reveals Pervasive Diversifying Selection during Species Diversification
نویسندگان
چکیده
Lyssavirus is a diverse genus of viruses that infect a variety of mammalian hosts, typically causing encephalitis. The evolution of this lineage, particularly the rabies virus, has been a focus of research because of the extensive occurrence of cross-species transmission, and the distinctive geographical patterns present throughout the diversification of these viruses. Although numerous studies have examined pattern-related questions concerning Lyssavirus evolution, analyses of the evolutionary processes acting on Lyssavirus diversification are scarce. To clarify the relevance of positive natural selection in Lyssavirus diversification, we conducted a comprehensive scan for episodic diversifying selection across all lineages and codon sites of the five coding regions in lyssavirus genomes. Although the genomes of these viruses are generally conserved, the glycoprotein (G), RNA-dependent RNA polymerase (L) and polymerase (P) genes were frequently targets of adaptive evolution during the diversification of the genus. Adaptive evolution is particularly manifest in the glycoprotein gene, which was inferred to have experienced the highest density of positively selected codon sites along branches. Substitutions in the L gene were found to be associated with the early diversification of phylogroups. A comparison between the number of positively selected sites inferred along the branches of RABV population branches and Lyssavirus intespecies branches suggested that the occurrence of positive selection was similar on the five coding regions of the genome in both groups.
منابع مشابه
Positive diversifying selection is a pervasive adaptive force throughout the Drosophila radiation.
The growing genomic information on non-model organisms eases exploring the evolutionary history of biodiversity. This is particularly true for Drosophila flies, in which the number of sequenced species doubled recently. Because of its outstanding diversity of species, Drosophila has become one of the most important systems to study adaptive radiation. In this study, we performed a genome-wide a...
متن کاملWidespread adaptive evolution during repeated evolutionary radiations in New World lupins
The evolutionary processes that drive rapid species diversification are poorly understood. In particular, it is unclear whether Darwinian adaptation or non-adaptive processes are the primary drivers of explosive species diversifications. Here we show that repeated rapid radiations within New World lupins (Lupinus, Leguminosae) were underpinned by a major increase in the frequency of adaptation ...
متن کاملAdaptive Populations of Endogenously Diversifying Pushpop Organisms are Reliably Diverse
This paper discusses the evolution of diversifying reproduction. We measured the average difference between mothers and their children, the number of species, and the degree of adaptation in evolving populations of endogenously diversifying digital organisms using the Pushpop system. The data show that the number of species in adaptive populations is higher than in non-adaptive populations, whi...
متن کاملDiversifying selection of the tumor-growth promoter angiogenin in primate evolution.
Diversifying selection drives the rapid differentiation of gene sequences and is one of the main forces behind adaptive evolution. Most genes known to be shaped by diversifying selection are those involved in host-pathogen or male-female interactions characterized as molecular "arms races." Here we report the unexpected detection of diversifying selection in the evolution of a tumor-growth prom...
متن کاملAdaptive Radiation
The world has millions of species, and they display an astonishing variety of size, color, and behavior. Adaptive radiations comprise groups of distinctive yet closely related species that have evolved from a common ancestor in a relatively short time. Studies of these radiations help reveal the causes of their evolution. As a result of natural selection during and after speciation, descendant ...
متن کامل